Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(1): 86-103, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314079

RESUMO

Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.


Assuntos
Propofol , Humanos , Propofol/efeitos adversos , Sincronização Cortical , Córtex Cerebral , Eletroencefalografia , Inconsciência/induzido quimicamente , Tálamo
2.
Front Neuroinform ; 12: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599715

RESUMO

DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.

3.
PLoS Comput Biol ; 13(12): e1005879, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29227992

RESUMO

The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8-12 Hz), Slow Wave Oscillations (SWO, 0.1-1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To investigate both generation of the alpha rhythm and its PAC to SWO, we simulate a Hodgkin-Huxley network model of a hyperpolarized thalamus and corticothalamic inputs. We find, for the first time, that the model thalamic network is capable of independently generating the sustained alpha seen in propofol, which may then be relayed to cortex and expressed on the EEG. This dose-dependent sustained alpha critically relies on propofol GABAA potentiation to alter the intrinsic spindling mechanisms of the thalamus. Furthermore, the H-current conductance and background excitation of these thalamic cells must be within specific ranges to exhibit any intrinsic oscillations, including sustained alpha. We also find that, under corticothalamic SWO UP and DOWN states, thalamocortical output can exhibit maximum alpha power at either the peak or trough of this SWO; this implies the thalamus may be the source of propofol-induced PAC. Hyperpolarization level is the main determinant of whether the thalamus exhibits trough-max PAC, which is associated with lower propofol dose, or peak-max PAC, associated with higher dose. These findings suggest: the thalamus generates a novel rhythm under GABAA potentiation such as under propofol, its hyperpolarization may determine whether a patient experiences trough-max or peak-max PAC, and the thalamus is a critical component of propofol-induced cortical spectral phenomena. Changes to the thalamus may be a critical part of how propofol accomplishes its effects, including unconsciousness.


Assuntos
Propofol/farmacologia , Tálamo/efeitos dos fármacos , Idoso , Ritmo alfa , Simulação por Computador , Eletroencefalografia , Humanos , Tálamo/fisiologia , Inconsciência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...